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Well test mathematical model of
multi-stage fracturing horizontal well

for deep layer shale gas
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Abstract. The well test model of multi-stage fracturing horizontal well in shale gas reser-

voir plays an important role in studying the seepage characteristicsof shale gas and evaluating the

completion e�ect. Firstly, a physical model of sh-ale gas multi-stage fracturing horizontal well is

established based on the geologic-al and production characteristics of deep shale gas reservoirs.

Then, the seepage model in the natural fracture system of shale gas reservoir is established based

onthe physical model, and the model is processed by dimensionless, perturbation transformation

and Lapalace transformation. The simpli�ed zero or-der model is obtained. Next the shale gas

migration model in the matrix is established accord-ing to the desorption characteristics of micro-

nano-matrix porosity. And then acc-ording to the idea of Huiyuan function method, after the basic

solution of the un-stable seepage �ow model in the production of a vertical line in the shale gas

reservoirs obtained, the arti�cial fracture joints are discretized by element along the fracture paths,

and the pressure response of each discrete element is obtained with the basis of the obtained line

of the basic solution along the discrete fractureunit integration, and the equations are connected to

obtain a multi-order matrix, the pressure response caused by the multi-stage fracturing horizontal

well can be obtained after solve the matrix. Finally, Stehfest numerical inversion and Gaussianelim-

ination are used to draw the typical curve of bottom pressure of multi-stage fracturing horizontal

wells in shale gas reservoir, The seepage mechanism and thesensitivity of curve parameters are

analyzed according to the typical curve.
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1. Introduction

The study of shale gas well seepage mathematical model began in the 1980s, early
scholars mainly consider the development of natural fractures in shale gas reservoirs,
based on the classic Warren-Root dual-hole model, adsorption and desorption are
coupled into the model to achieve the description of the law of shale gas migra-
tion, but almost never consider the di�usion within matrix pores, such as Kucuk
et al [1]. Kuuskraa [2] studied the e�ect of the presence of adsor-bed gas on the
recovery of shale gas reservoirs and pointed out the importance ofadsorbed gas in
the development of shale gas. Ozkan et al. [3-5] studied the percolation of shale
gas using a two-hole media model, assuming that shale gas �ow in natural fractures
for Darcy �ow, considering the mechanism of di�usion migra-tion in the matrix at
the same time, a model of shale fracture and matrix coup-ling was established, but
the model does not take the existence of desorption in the shale matrix and non-
Darcy �ow phenomenon into consideration. Wu et al.[6]considered the �ow of shale
gas in the matrix as a non-Darcy �ow with a slip-page e�ect, the �ow in natural
fractures is high-speed non-Darcy �ow, a seepagemodel was established to study
the seep-age law of shale gas, but the seepage model did not consider the unique
desorption and di�usion mechanism during thedevelopment of shale gas reservoirs.
Rasheed and Robert [7] studied the produc-tion dynamics of multistage fracturing
horizontal wells in shale gas reservoirs, but also neglected the e�ects of desorption
and di�usion during the development of shale gas reservoirs. In addition, the shale
gas accumulation mechanism, seepage and well test theory Had been studied [8-12]
by so many scholars, but there are still many de�cien-cies. In general, shale gas well
testing theory is not mature, especially for deep layer shale gas reservoirs, there are
more defects. Therefore, in order to get a re-liable explanation of the results, it is
necessary to establish a well test interpreta-tion model which accords with the char-
acteristics of shale gas reservoirs from theactual situation of geological and seepage
characteristics of deep layer shale gas reservoirs.

2. Physical model

In the shale gas reservoir, a horizontal well is formed by M strips fractures after
multi-stage hydraulic fracturing, the y-axis coordinate of the intersection of the
intersecting fracture of the i (1 i M) and the y-axis is yi. The other assump-tions
are as follows:

(1)There are natural fractures and micro-nano-matrix pores in the reservoir;
(2)The �ow in the natural fracture system is a single-phase Darcy isothermal

seepage, and there is a stress-sensitive e�ect, while the �uid in the micro-nano-
matrix pores can only di�use into the natural cracks under the e�ect of concentra-
tion di�erence;

(3)There is a constant gas production qsc in the multi-stage fracturing horiz-ontal
well;

(4)Gravity and capillary force are ignored;
(5)Reservoir initial formation pressure is pi;
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(6)Due to the control of the ground stress, the fracturing fractures may not be
perpendicular to the horizontal well, but to a certain angle with horizontal well.

Fig. 1. Physical model of fracturing horizontal wells with multi-stage fracturing

3. Seepage model within natural fractures

3.1. Di�erential equation of seepage �ow

The seepage di�erential equation within the natural fracture system of shale gas
reservoir, which is as formula (1) shows:
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+

1
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∂ψ

∂r
+ β

(
∂ψ
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(
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3.2. Fixed solution condition

Line inner boundary condition:

lim
ε→0

e−(ψi−ψ)βr
∂ψ

∂r

∣∣∣∣∣r=ε=psc
_
q (t)T

πkhTsc
(2)

External boundary condition:

ψ|r→∞ = ψi (3)

Initial condition:

ψ|t=0 = ψi (4)

The seepage model within the natural fracture system of shale gas reservoir con-
sists of formula (1) � (4).
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3.3. Dimensionless model

The dimensionless parameters of the model are shown in Table 1.
According to the parameters de�ned in Table 1, the equations (1) to (4) become

dimensionless:
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D

+
1

rD

∂ψD
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− γD

(
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= eγDψD
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(5)

lim
εD→0

e−ψDγDrD
∂ψD
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∣∣∣r=εD=−
_
qD (6)

Mpq =

∫ ∫
xpyqf(x, y)dxdy p, q = 0, 1, 2... (7)

Fpq =

∫ ∫
f(r, θ)gp(r)e

jqθrdrdθ (8)

The formula (5) � (8) is the dimensionless mathematical model of the unstable
seepage �ow within the natural fracture system of the shale gas reservoir.

Table 1. Dimensionless parameter de�nition table λ for a trapezoidal plate for di�erent values of
taper constant β1 and constant aspect ratios a/b = 1.0, c/b = 0.5

Dimensionless variable expression

Pseudo pressure di�erence (Ψ) ∆ψ = ψi − ψ

Dimensionless pseudo pressure (ΨD) ψD = πkihTsc
pscqscT

∆ψ

Dimensionless radial distance (rD) rD = r
Lref

Variation of free gas concentration in bedrock
(VD)

VD = Vi − V

Total system capacity of elastic storage (Λ) Λ = φCgi + 2πkih
qscµi

Dimensionless time (tD) tD = kit

µiΛL
2
ref

Elastic volume ratio (ω) ω =
φCgi

Λ

Dimensionless permeability modulus (γD) γD=β pscqscT
πkihTsc

Linear dimensionless yield q̂D q̂D = q̂D(tD) = q̂(t)/qsc

3.4. Perturbation transformation and Lapalace transforma-
tion

The Pedrosa transform formula is introduced into formula (9):

ψD (rD, tD) = − 1

γD
ln [1− γDξD (rD, tD)] (9)
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The model of natural fracture seepage described by formula (5) � (8) turns into
formula (10) � (13):
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∫
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The perturbation transformation formula is introduced
ξD = ξD0 + γDξD1 + γ2

DξD2 +O(γ3
D) (14a)

− 1
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2γDξ

2
D(rD, tD) +O(γ2

D) (14b)
Considering the dimensionless permeability modulus γD is very small, the precision
can be satis�ed by taking the perturbation solution of zero order, so there are:
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ξD0|rD→∞ = 0 (16)

ξD0|tD→∞ = 0 (17)

Then, the Lapalace transform based on tD is introduced:

ξD0 =

∫ +∞

0

ξD0e−stDdtD (18)

VD =

∫ +∞

0

VDe−stDdtD (19)

The formula (15) � (18) becomes:
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ξD0

∣∣
rD→∞

= 0 (22)

The formula (22) � (23) is the zero-order model of the unsteady seepage �ow
model within the natural fracture system of the shale gas reservoir by Lapalace
transformation and perturbation.

4. Migration model within the matrix

There are a large number of micro-nano-pores in the matrix of shale, the size of
these pores is minimal, the speci�c surface ratio is large, which cause a large amount
of shale gas is adsorbed on the surface of the pores, when the pressure drops, the
gas will be desorbed from the adsorption state and turned into free gas. Due to
the pore size is very small, and the permeability is extre-mely low, therefore, the
prevailing view is that the shale gas in the matrix pores could not �ow into the
natural fracture system through the seepage �ow under the action of the pressure
di�erence, but it can �ow into the fractures through di�usion with the e�ect of
concentration di�erence, this di�usion phenomenon can be described by Fick's law.

∂V

∂t
=

6Dπ2

R2
m

(VE − V ) (23)

In combination with the de�nition of VD in Table 1, and order: VED = Vi − VE

,λ =
µiΛL

2
ref

kiτ
,τ=

R2
m

6Dπ2

So the formula (24) can be turned into formula (25):

∂VD

∂tD
= λ (VED − VD) (24)

For the quasi-steady-state di�usion case, based on the Langmuir isothermal ad-
sorption theory, equations (26) and (27) can be obtained:

VE = VL
ψ

ψL + ψ
(25)

Vi = VL
ψi

ψL + ψi
(26)

Based on the de�nition of formula VED, and formula (26) and (27), formula (28)
can be obtained:

VED = Vi − VE = σψD (27)

In the formula (28), σ is the adsorption index, and its expression is formula (29a):
σ=pscqscT

πkhTsc

ψLVL

(ψL+ψ)[ψL+ψi]
(29a)

Within the range of general pressure changes, it can be assumed that σ is a
constant, whenψ = ψi, formula (29a) is simpli�ed and turned into formula (29b):

σ=pscqscT
πkhTsc

ψLVL

(ψL+ψi)[ψL+ψi]
(29b)
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The Laplace transform of equation (25) and (??)26) is performed,

sVD = λ
(
VED − VD

)
(28)

VED = σψD (29)

Simultaneous formulas (30) and (??)31), formula (32) can be obtained:

VD =
σλ

s+ λ
ψD (30)

5. Coupling of seepage model and di�usion model

Substituting formula (32) into formula (21); the formula (33) can be obtained:

d2ξD0

dr2
D

+
1

rD

dξD0

drD
= ωsξD0 +

σλ(1− ω)

s+ λ
sψD (31)

Taking use of perturbation transformation formula (14a) and (14b), considering
that the dimensionless permeability modulus is small, zero order perturbation solu-
tion can meet the precision, and based on the formula (33), the formula (34) can be
obtained:

d2ξD0

dr2
D

+
1

rD

dξD0

drD
= ωsξD0 +

σλ(1− ω)

s+ λ
sξD0 (32)

Order:

f(s) = ωs+
σλ(1− ω)

s+ λ
s (33)

So the formula (34) can be turned into formula (36):

d2ξD0

dr2
D

+
1

rD

dξD0

drD
= f(s)ξD0 (34)

The formula (36) is the di�erential equation which is coupled between thenat-
ural fractured seepage di�erential equation and the quasi-steady-state di�ere-ntial
equation of the matrix, the general solution is equation (37):

ξD0 = AK0

(√
f(s)rD

)
+BI0

(√
f(s)rD

)
(35)

From the properties of the Bessel function, it is necessary to have B = 0 for the
formula (23) is established in the fracture model, so the formula (37) can be turned
into formula (38):

ξD0 = AK0

(√
f(s)rD

)
(36)
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Formula (38) is introduced into the formula (22) of the fractured model, formula
(39) can be obtained:

A
[
−
√
f(s)rD

]
K1

(√
f(s)rD

)∣∣∣
rD→0

= −q̂D (37)

From the formula (39) and the Bessel functionxK1 (x)|x→0 = 1, formula (40) can
be obtained:

A = q̂D (38)

Formula (40) is introduced into the formula (38), formula (41) can be obtained:

ξD0 = q̂DK0

(√
f(s)rD

)
(39)

Formula (41) is the basic solution of the zero-order perturbation obtained by coupling
the natural fracture seepage model with the quasi-steady-state di�-usion model.

6. Unstable pressure dynamics

6.1. Pressure response

Considering that the dimensionless permeability modulus γDis very small, zero
order perturbation solution can meet the precision, therefore, the formula (41) is
written directly as formula (42):

ξD = q̂DK0

(√
f(s)rD

)
(40)

Using the de�nition in Table 1, the formula (42) can be written as formula (43):

ξD =
q̂

qsc
K0

(√
f(s)rD

)
(41)

If the line is not located in the gas reservoir center, but in any position (xw, yw),
the formula (43) can be written as formula (44):

ξD =
q̂

qsc
K0

(√
f(s)RD

)
(42)

And among them:

gZerinkep (r) =

(p−|q|)/2∑
s=0

(−1)s × (p− s)!
s!(p+|q|2 − s)!(p−|q|2 − s)!

rp/2−s

Although the total surface gas production volume of the fractured horizon-tal
well is constant, the �ow of the formation into the each crack is not alwa-ys equal
throughout the �ow process, even for di�erent parts of the same crack, the �ow from
the formation is not always equal, the method of unit dis-persion is adopted here for
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this kind of �ow inhomogeneity problem.

Fig. 2. the discrete diagram of multi-stage fracturing horizontal well unit

As is shown in Fig.2, the left and right wings of each fracture are equally divided
into N discrete units, so there are 2N discrete units on each fracture, according to the
geometric relationship, the midpoint (nodal) coordinates of the jth discrete element
on the ithcrack are denoted as formula (45) and (46):

When 1 j N: Formula (45) can be obtained:

(
2j − 2N−1

2N
XfLi sinαi, yi +

2N − 2j + 1

2N
XfLi cosαi) (43)

When N + 1 j 2N: Formula (46) can be obtained:

(
2N + 2j − 1

2N
XfRi sinαi, yi +

2N − 2j + 1

2N
XfRi cosαi) (44)

According to the geometric relationship, the coordinates of the jthend point on
the ithfracture are denoted as formulas (47) and (48):

When 1 j N: Formula (47) can be obtained:

(
j −N − 1

N
XfLi sinαi, yi +

N − j + 1

N
XfLi cosαi) (45)

When N + 1 j 2N:Formula (48) can be obtained:

(
2j −N − 1

N
XfRi sinαi, yi +

N − j + 1

N
XfRi cosαi) (46)

∆yi = yi − yi−1 (47)

The straight line equation of the ith fracture is equation (50):

ywi = −ctg(αi)xwi + yi (48)

After dimensionless:

ywDi = −ctg(αi)xwDi + yDi (49)
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And among them:

ψab(r) =
1√
b
ψ(
r − b
a

)

Assuming that the linear density �ow qij on the same discrete fracture element
is equal, so the response of the jth discrete unit on the ith fracture to the point (xD,
yD), which can be obtained by integrating on the unit with the line basic solution
formula (44):

ξDi,j (xD, yD) =
q̄i,j (u)

qsc

∫
Γi,j

K0

[√
f (s)RD (xD, yD;xwD, ywD)

]
dl (50)

And among them: RD (xD, yD;xwD, ywD) =

√
(xD − xwD)

2
+ (yD − ywD)

2

dl =
√
dx2 + dy2

Taking use of the formulas (50) and (51), the curve integral of formula (52) is
ransformed into a single integral of xwi:

qDi,j(u) =
qi,j(u)Lref

qsc
(51)

And among them:

RD (xD, yD;xwDi) =

√
(xD − xwDi)

2
+ [yD + ctg (αi)xwDi − yDi]

2
(52)

According to the superposition principle of potential, the response of the 2N ×
M discrete units on the M vertical cracks at any point on the plane (xD, yD) is
formula (57):

ξD(xD, yD) =

M∑
i=1

2N∑
j=1

ξDi,j(xD, yD) (53)

If (xD, yD) is taken as the node (x̂Dk,υ, ŷDk,υ) of the discrete unit (1 K M, 1 v
2N), then the formula (58) can be obtained:

ξD (x̂Dk,υ, ŷDk,υ) =

M∑
i=1

2N∑
j=1

ξDi,j (x̂Dk,υ, ŷDk,υ) (54)

In low permeability shale gas reservoirs, the permeability of the gas reservoir is
much smaller than that of the arti�cial fracture, so the seepage resistance of the
�uid in the arti�cial fracture is much smaller than the seepage resistance in the
formation, therefore, the arti�cial fracture can be regarded as an in�nite diversion
fracture, that is to say, we can ignore the pressure loss of the �uid generated in the
arti�cial fracture, then formula (59) can be obtained:

ξD (x̂Dk,υ, ŷDk,υ) = ξwD (55)
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So formula (58) can be turned into formula (60):

ξwD =

M∑
i=1

2N∑
j=1

ξDi,j (x̂Dk,υ, ŷDk,υ) (56)

Taking di�erent k, v(k=1,2. . .Mv=1,2. . . 2N) in formula (60), 2N × M equations
can be obtained ,the uncertain q̄Di,j(u) and ξwDthat need to be solved are total
2N × M + 1 , an equation is still needed, total production conditions of fracturing
horizontal wells should also be used:

M∑
i=1

2N∑
j=1

[q̄i,j∆Lfi,j ] =
qsc

u
(57)

∆Lfi,j is the length of the unit (i, j),and then formula (61) can be turned into
formula (62):

M∑
i=1

2N∑
j=1

[q̄Di,j∆LfDi,j ] =
1

u
(58)

Formulas (60) and (62) represent 2N × M + 1 linear algebraic equation, the
uncertain q̄Di,j(u) and ξwD are total 2N × M + 1, thus it can be closed to solve. It
can be expressed in matrix form:

AX = C (59)

The integrals in the coe�cient matrix can be calculated by using numeric-al
integrals. Since the matrix is a dense matrix, therefore, the direct solution (e.g.
Gauss elimination) of linear algebraic equations can be used to solve the matrix,
and it is not necessary for an iterative solution (such as Jacobi iterations, Gaussian-
Saide iterations, etc.).

6.2. Typical Curve and Sensitivity Analysis

Through programming, Stehfest numerical inversion and Gaussian elimination
are used to draw the typical curve of bottom pressure of multi-stage fractu-ring
horizontal well in shale gas reservoirs, Fig.2 shows the e�ect of di�erent parameters
on the typical curve when using a quasi-steady-state di�usion model o calculate.

The seepage process of fracturing horizontal well in shale gas reservoir can be di-
vided into nine stages: Early pure wellbore storage section, the pressure and pressure
derivative of this section is a straightline with a slope of 1; The transition section
after early pure wellbore stor-age section, the pressure derivative curve of this sec-
tion is a "hump"; The �rst linear �ow section, the pressure derivative curve of this
section is astrai-ght line with a slope of 0.5; The transition section which is from
the initial linear �ow to the initial quasi-radial �ow; The initial quasi-radial �ow
sec-tion around each arti�cial fracture, the ordinate value of the pressure derivative
is "1/M" in this section; The second linear �ow section; The transition section be-
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Fig. 3. The typical curve of di�erent γD

tween the second linear �ow section and the channeling section;Chan-neling section,
this section mainly re�ects the �ow of the matrix �owing tothe fracture, the pres-
sure derivative curve shows a downward "depression"; Late quasi-radial �ow section,
when "γD = 0", the section is a horizontal line with an ordinate value of "0.5", with
γD gradually increasing, the sec-tion is a straight line with increasing slope, which
re�ecting the stronger the degree of stress sensitivity, the later energy consumption
is faster.Fig.4 shows the e�ect of the elastic storage ratio ω on the typical curve.As
it can be seen from the Fig, when the ω is much smaller, the depression is much
deeper.

Fig. 4. the e�ect of elastic storage ratio ω on typical curve

Fig.5 is the e�ect of the adsorption index σ on the typical curve. As it can be
seen from the Fig, when theσis much smaller, the depression is much shallower.

Fig.6 is the e�ect of the channeling coe�cient λ on the typical curve. As it can be
seen from the Fig.6, when the λ is much smaller, the time of the depression occurs
is much later.

Fig.7 is the e�ect of the arti�cial fracture half-length Xfi on the typical curve.
As it can be seen from the Fig, the Xfi is much smaller, the position of the initial
linear �ow section is much higher, the initial linear �ow section lasts much longer,
corresponding, the time of the initial radial �ow occurs much later, the duration
time is much shorter.

Fig.8 is the e�ect of the arti�cial fracture spacing ∆yion the typical curve.As it
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Fig. 5. e�ect of adsorption index σ on typical curve

Fig. 6. e�ect of channeling coe�cient λ on typical curve

Fig. 7. e�ect of arti�cial fracture half-length Xfi on typical curve

can be seen from the Fig, the ∆yi is much longer, the initial radial �ow section is
much more obvious, the time lasts much longer, on the contrary, the∆yi is much
shorter, the initial radial �ow section is much shorter, while the ∆yi is small to a
certain extent, theinitial radial �ow section will disappear.
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Fig. 8. e�ect of the arti�cial fracture spacing ∆yion the typical curve

6.3. Conclusions

(1) The model not only takes into account the multiple migration mechan-ism of
shale gas (adsorption desorption, di�usion, Darcy percolation), it will also feature
the stress sensitive characteristics of deep shale gas at the same time, the well test
interpretation model of horizontal well based on multiple mechanisms is established,
a well test interpretation of types of multi-stage fra-cturing horizontal wells for shale
gas reservoirs can be obtained.

(2) The whole seepage process of the multi-stage fracturing horizontal wellof the
shalegas reservoir may appear following feature sections: Early pure wellbore storage
section; The �rst linear �ow section; The initial quasirad-ial �ow section; The second
linear �ow section; ??Gas di�usion section; The second quasi-radial �ow section

(3) The arti�cial fracture spacing δyi is much longer, the initial radial
Flow section is much more obvious, and the time of this section lasts much longer.
(4) When the σ is much smaller, the depression is much shallower.
(5) The arti�cial fracture half-length Xfi is much smaller, the position of the

initial linear �ow section is much higher, and the initial linear �ow section lasts
much longer.

(6) When production is relatively stable, for the same fracturing fracture, the
�ow velocity at the fracture tip is greater than that in the middle of the fracture; for
the di�erent fracturing fractures, the �ow velocity at the end of fracturing horizontal
wellbore is greater than that in the middle of fracturing horizontal wellbore fractures.

(7) When the horizontal wells are staged fractured, the fracture layout, which is
denseat two ends and thin in the middle in the entire horizontal section can be used.
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